Astragaloside IV Inhibits Adipose Lipolysis and Reduces Hepatic Glucose Production via Akt Dependent PDE3B Expression in HFD-Fed Mice

نویسندگان

  • Qun Du
  • Shuihong Zhang
  • Aiyun Li
  • Imran S. Mohammad
  • Baolin Liu
  • Yanwu Li
چکیده

Objective: This study aims to investigate the effect of astragaloside IV on adipose lipolysis and hepatic gluconeogenesis. Methods: High-fat diet (HFD) feeding induced adipose dysfunction with enhanced endogenous glucose production in mice. The effects of Astragaloside IV on lipolysis and hepatic glucose production were investigated. Results: HFD feeding induced cAMP accumulation through reducing PDE3B expression and activity in adipose tissue. As a result, HFD feeding increased adipose lipolysis in mice. Astragaloside IV enhanced Akt phosphorylation and promoted Akt binding to PDE3B to preserve PDE3B content, resultantly reducing adipose cAMP accumulation. Knockdown of Akt1/2 diminished the effect of astragaloside IV on PDE3B induction, indicative of the role of Akt in astragaloside IV action. As a result from blocking of cAMP/PKA signaling, astragaloside IV suppressed hormone-sensitive lipase (HSL) activation and inhibited inflammation-associated adipose lipolysis. Moreover, astragaloside IV reduced ectopic fat deposition in the liver and inhibited FoxO1 activation via regulation of Akt, resultantly restraining excess hepatic glucose production. Conclusion: We showed that preserving PDE3B content by Akt is a key regulation to prevent lipolysis. Astragaloside IV inhibited lipolysis by reducing cAMP accumulation via regulation of Akt/PDE3B, contributing to limiting hepatic lipid deposition and restraining excessive hepatic glucose production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ginsenoside Rg5 Inhibits Succinate-Associated Lipolysis in Adipose Tissue and Prevents Muscle Insulin Resistance

Endoplasmic reticulum (ER) stress, inflammation, and lipolysis occur simultaneously in adipose dysfunction and contribute to insulin resistance. This study was designed to investigate whether ginsenoside Rg5 could ameliorate adipose dysfunction and prevent muscle insulin resistance. Short-term high-fat diet (HFD) feeding induced hypoxia with ER stress in adipose tissue, leading to succinate acc...

متن کامل

The Role of Heparin Cofactor II in the Regulation of Insulin Sensitivity and Maintenance of Glucose Homeostasis in Humans and Mice

AIM Accelerated thrombin action is associated with insulin resistance. It is known that upon activation by binding to dermatan sulfate proteoglycans, heparin cofactor Ⅱ(HCⅡ) inactivates thrombin in tissues. Because HCⅡ may be involved in glucose metabolism, we investigated the relationship between plasma HCⅡ activity and insulin resistance. METHODS AND RESULTS In a clinical study, statistical...

متن کامل

Unsuppressed lipolysis in adipocytes is linked with enhanced gluconeogenesis and altered bile acid physiology in InsrP1195L/+ mice fed high-fat-diet

High-fat diet (HFD) triggers insulin resistance and diabetes mellitus, but their link remains unclear. Characterization of overt hyperglycemia in insulin receptor mutant (Insr(P1195L/+)) mice exposed to HFD (Insr(P1195L/+)/HFD mice) revealed increased glucose-6-phosphatase (G6pc) expression in liver and increased gluconeogenesis from glycerol. Lipolysis in white adipose tissues (WAT) and lipoly...

متن کامل

Ginsenoside Rg1 Inhibits Glucagon-Induced Hepatic Gluconeogenesis through Akt-FoxO1 Interaction

Rationale: Glucagon is involved in hepatic gluconeogenesis, playing a key role in type 2 diabetes. Ginsenosides are reported to have antidiabetic activities. Ginsenoside Rg1 is a major propanaxatriol-type saponin in ginseng. This study aims to investigate the regulatory effects of Rg1 on glucagon-induced hepatic glucose production. Methods: The effects of Rg1 were investigated in high-fat-diet ...

متن کامل

Polyphenol-Rich Fraction of Ecklonia cava Improves Nonalcoholic Fatty Liver Disease in High Fat Diet-Fed Mice

Ecklonia cava (E. cava; CA) is an edible brown alga with beneficial effects in diabetes via regulation of various metabolic processes such as lipogenesis, lipolysis, inflammation, and the antioxidant defense system in liver and adipose tissue. We investigated the effect of the polyphenol-rich fraction of E. cava produced from Gijang (G-CA) on nonalcoholic fatty liver disease (NAFLD) in high-fat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018